Fans & Blowers

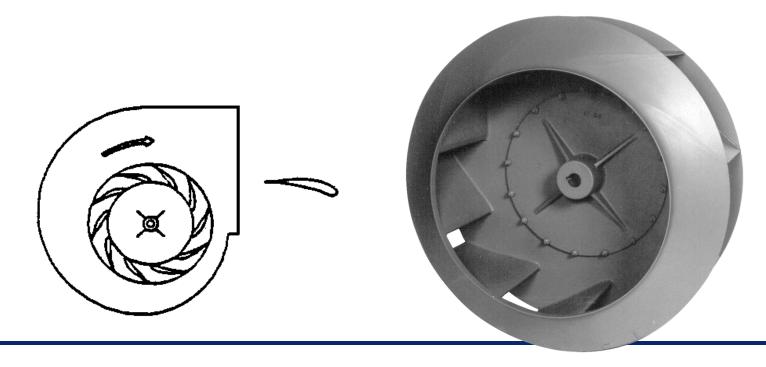
Selecting the Right Fan

© Twin City Fan Companies

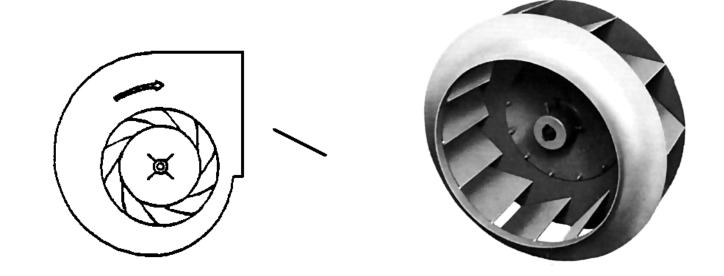
Outline

- Fan Types
 - Applications
 - Performance Characteristics
- Fan Construction
 - Drive Arrangements
 - Fan Rotation and Discharge
 - Fan Class of Construction
 - Spark Resistant Construction
 - Special Coatings and Materials
- Fan Selection Considerations
 - Motors
 - V-belt Drives
 - Inlet Vanes

Basic Fan Types

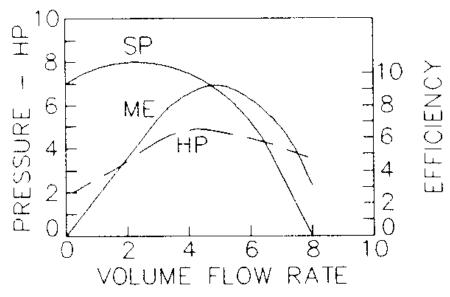

- Centrifugal
 - Backward Inclined Airfoil-blade
 - Backward Inclined Flat-blade
 - Forward Curved Blade
 - Radial Blade
 - Radial Tip
- Axial
 - Propeller / Panel Fan
 - Tubeaxial
 - Vaneaxial
- Special Designs
 - Power Roof Ventilators
 - Tubular Inline Centrifugal
 - Mixed Flow

Backward Inclined - Airfoil Blade


- Name is derived from the "airfoil" shape of blades
- Developed to provide high efficiency
- Used on large HVAC and clean air industrial systems where energy savings are of prime importance

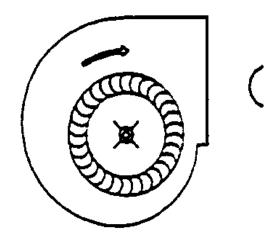
Backward Inclined - Flat Blade

- Backward inclined blades are single thickness or "flat"
- Efficiency is only slightly less than airfoil blade
- Same HVAC applications as airfoil blade
- Also for industrial applications where airfoil blade is not acceptable because of corrosive or erosive environment



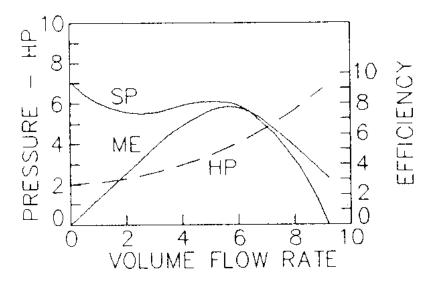
Backward Inclined - Flat & Airfoil Blade

- High volume at moderate pressure
- High speed
- Non-overloading power characteristic
- Low abrasion resistance
- High efficiency
- Stable performance characteristic
- Low noise
- Generally clean air use



Forward Curved Blade

- Blades are curved forward in the direction of rotation
- Less efficient than Airfoil and Backward Inclined
- Requires the lowest speed of any centrifugal to move a given amount of air
- Used for low pressure HVAC systems

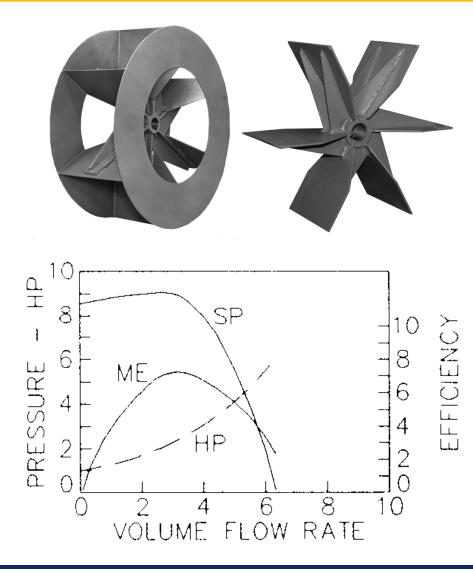


Forward Curved Blade

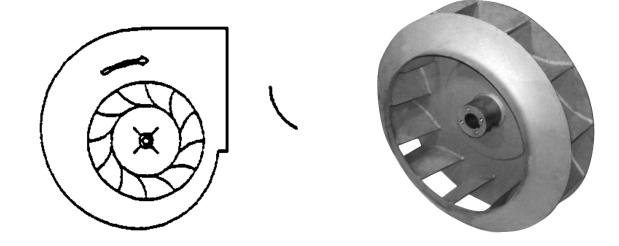
- Blades are curved forward in the direction of rotation
- Large volume at low pressure
- Slow speed
- Small size for a given volume
- Low to medium efficiency
- Must be properly applied to avoid unstable operation
- Clean air and high temperature applications



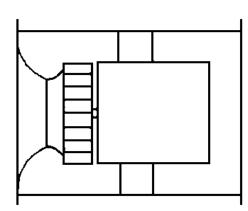
Radial Blade


- The blades are "radial' to the fan shaft
- Generally the least efficient of the centrifugal fans
- For material handling and moderate to high pressure industrial applications

Radial Blade


- Low volume at high pressure
- Large wheel diameter for a given volume- higher cost
- Material handling, self cleaning
- Medium efficiency
- Easy to maintain
- Rising HP characteristic
- Suitable for dirty airstream, high pressure, high temperature and corrosive applications

Radial Tip

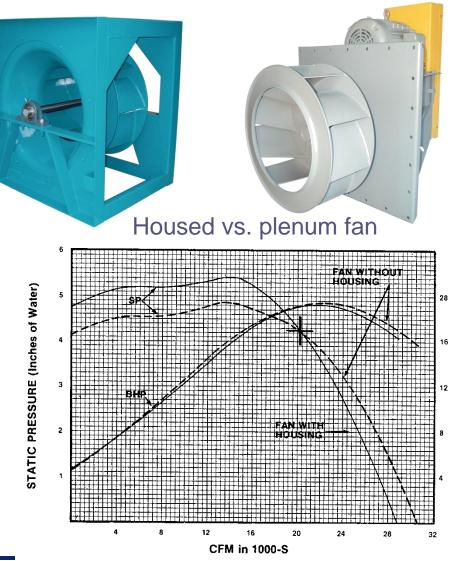

- The blades are radial to the fan shaft at the outer extremity of the impeller, but gradually slope towards the direction of wheel rotation
- More efficient than the radial blade
- Designed to wear resistance in mildly erosive air streams

Inline Centrifugal Fan

- Cylindrical housing is similar to a vaneaxial fan
- Wheel is generally an airfoil or backward inclined type
- Housing does not fit close to outer diameter of wheel
- For low and medium pressure HVAC systems or industrial applications when an inline housing is geometrically more convenient than a centrifugal configuration

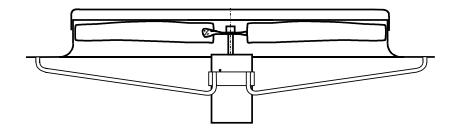
Mixed Flow Fan

- Cylindrical housing is similar to a centrifugal inline fan
- High volume advantages of axial fans
- Low sound, high efficiency advantages of tubular centrifugal fans



Plenum/Plug Fan

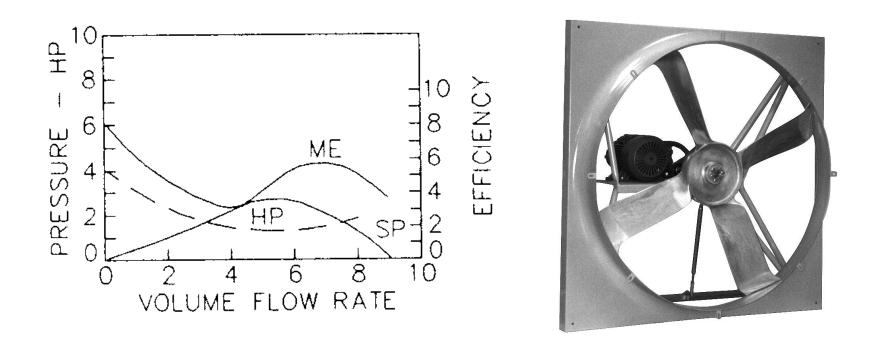
- Offers tremendous flexibility for inlet and discharge in a AHU application
- Works better than a housed centrifugal for high flows and low SP
- Wall clearance rules must be followed to avoid significant system effect losses


POWEF

BRAKE HORSE

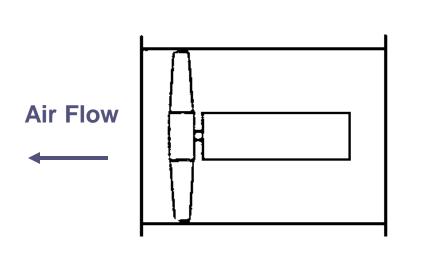
Propeller or Panel Fan

- One of the most basic fan designs
- For low pressure, high volume applications
- Designed for ventilation through a wall
- Also available in ring fan design



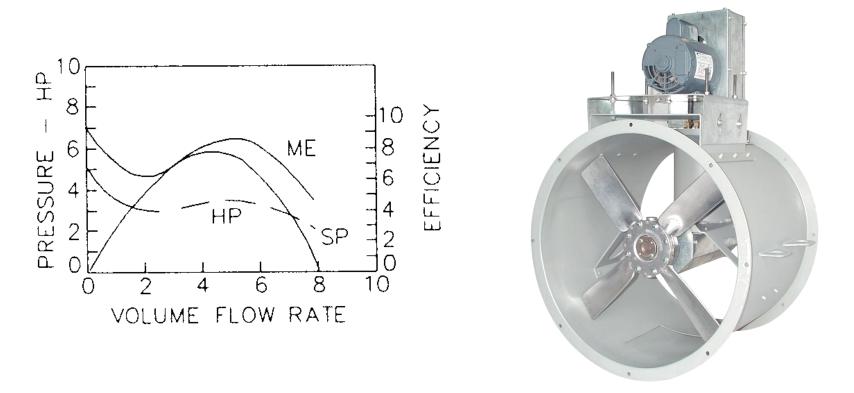
Propeller or Panel Fan

• Maximum efficiency is reached near free delivery


Panel Fan Installation

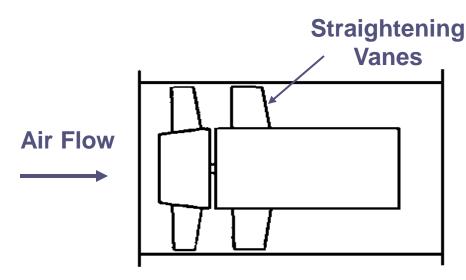
Tubeaxial Fan

- More efficient than the panel fan
- Cylindrical housing fits closely to outside diameter of blade tips
- For low to medium pressure ducted HVAC systems
- Used in low pressure industrial applications



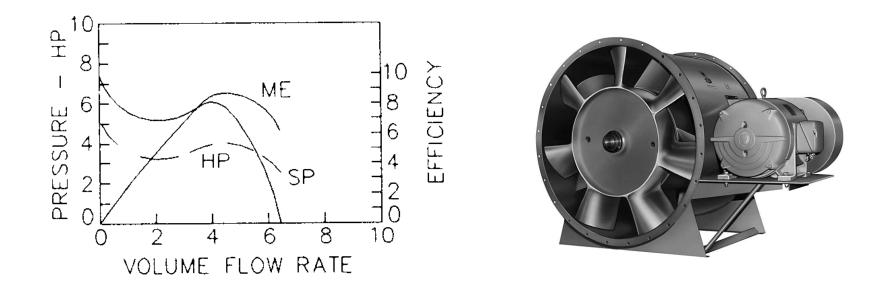
Tubeaxial Fan

• Performance curve sometimes includes a dip to the left of peak pressure which should be avoided


Tubeaxial Fan – Spray Booth Application

Vaneaxial Fan

- Highest efficiency axial fan
- Cylindrical housing fits closely to outside diameter of blade tips
- The straightening vanes allow for greater efficiency and pressure capabilities
- For medium to high pressure HVAC systems



Vaneaxial Fan

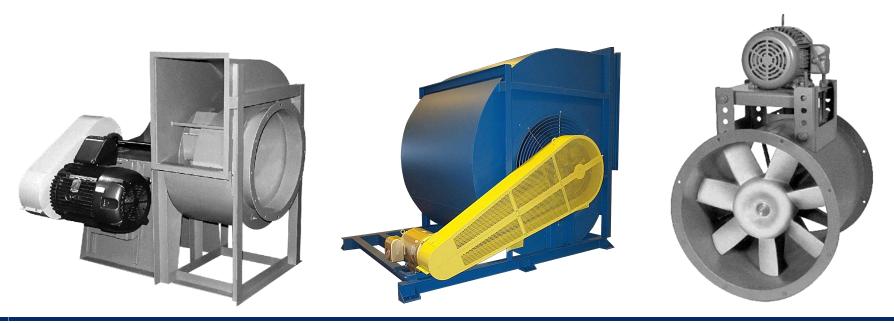
- More compact than centrifugal fans of same duty
- Aerodynamic stall causes the performance curve to dip to the left of peak pressure which should be avoided

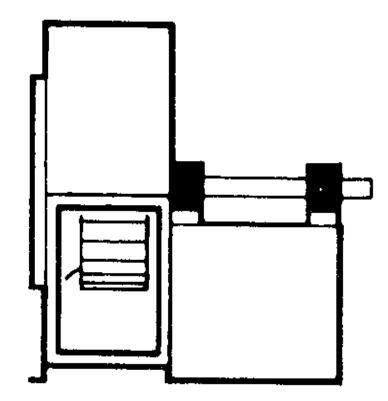
Vaneaxial Fan Installation

Power Roof Ventilators

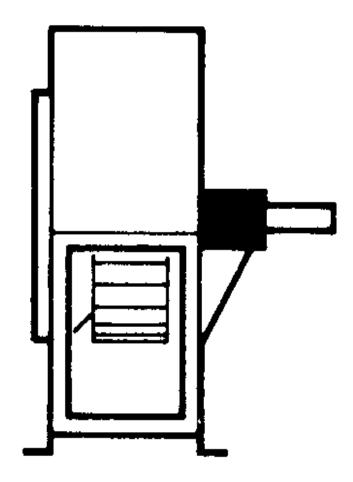
- Roof mounted exhaust ventilators. Available in centrifugal or axial wheel designs.
- Available in upblast damper design to discharge air away from the building
- For low pressure exhaust systems of all building types

Axial Roof Ventilator

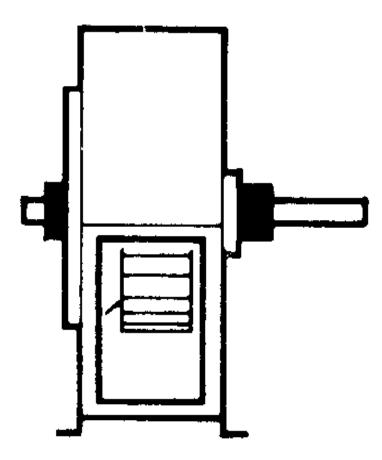

Centrifugal Power Roof Ventilator


Fan Construction

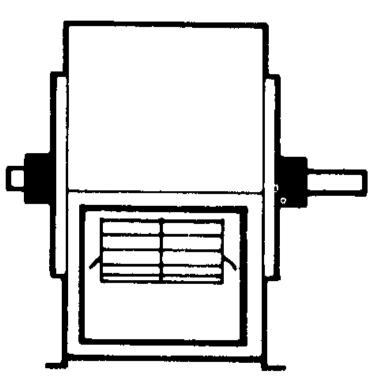
- Drive Arrangements
- Fan Rotation and Discharge
- Fan Class of Construction
- Spark Resistant Construction
- Special Coatings and Materials



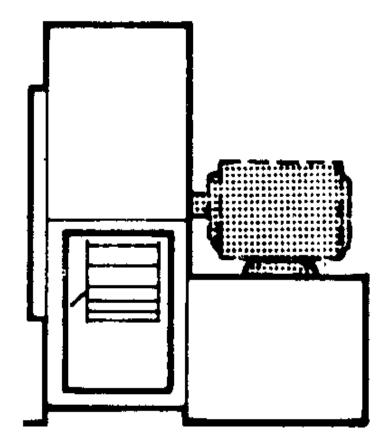
- Arrangement 1 SWSI
 - For belt drive (or direct) connection
 - Impeller overhung
 - Two bearings on base
 - Motor mounted beside fan, typically on a common base



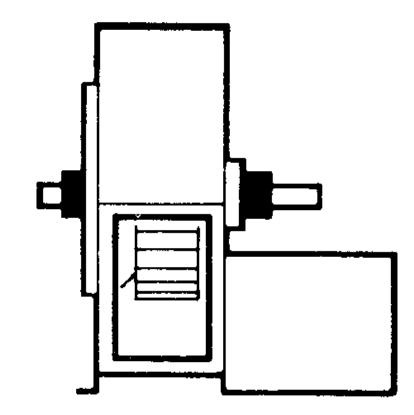
- Arrangement 2 SWSI
 - For belt drive or direct drive connection
 - Impeller overhung
 - Bearings in bracket supported by fan housing
 - Rarely used today



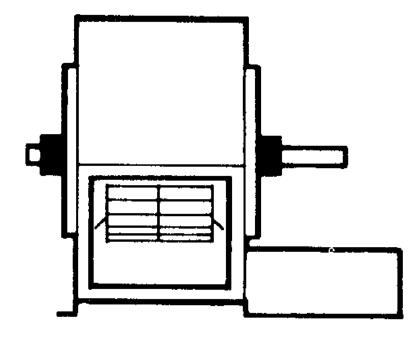
- Arrangement 3 SWSI
 - For belt drive (or direct) connection
 - One bearing on each side and supported by fan housing
 - Motor mounted beside fan, typically on a common base



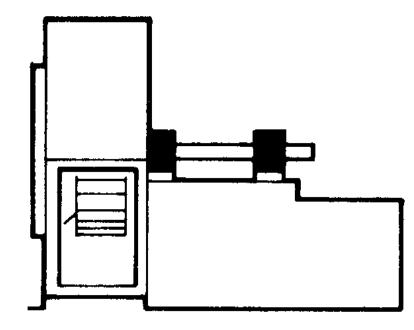
- Arrangement 3 DWDI
 - For belt drive (or direct) connection
 - One bearing on each side and supported by fan housing
 - Motor mounted beside fan, typically on a common base



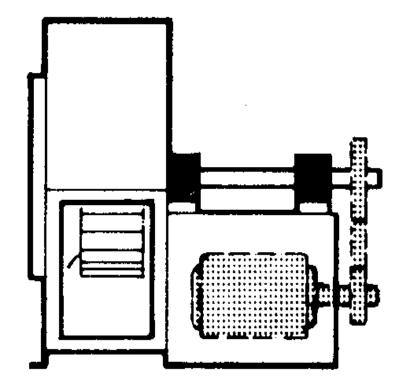
- Arrangement 4 SWSI
 - For direct drive connection
 - Impeller overhung on prime mover shaft
 - No bearings on fan
 - Motor base mounted or integrally directly connected



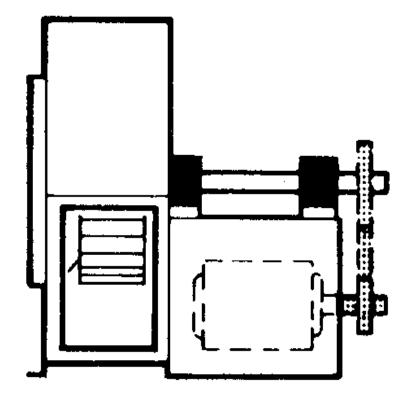
- Arrangement 7 SWSI
 - For direct drive connection
 - Arrangement 3 plus base for motor
 - Motor coupled to fan shaft



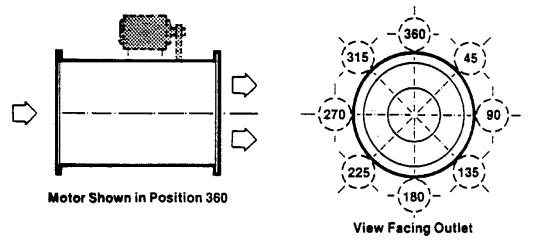
- Arrangement 7 DWDI
 - For direct drive connection
 - Arrangement 3 plus base for motor
 - Motor coupled to fan shaft



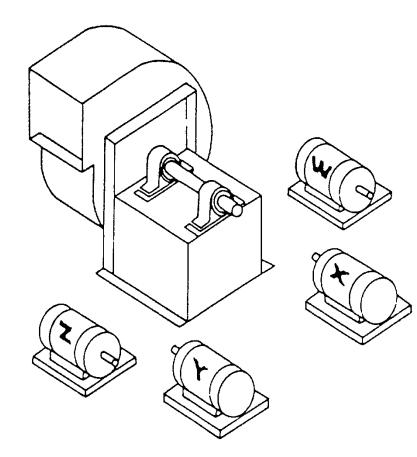
- Arrangement 8 SWSI
 - For direct drive connection
 - Arrangement 1 plus extended base for motor
 - Motor coupled to fan shaft


- Arrangement 9 SWSI
 - For belt drive
 - Impeller overhung
 - Two bearings with motor mounted outside base

Drive Arrangements For Centrifugal Fans

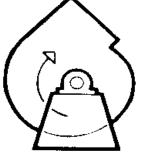

- Arrangement 10 SWSI
 - For belt drive
 - Impeller overhung
 - Two bearings with motor mounted inside base

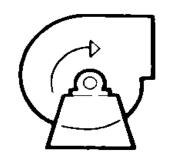
Drive Arrangements for Inline Fans

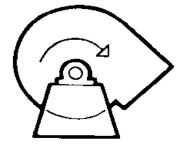

- Rotation of fans is determined by viewing the fan outlet end
- Specify horizontal or vertical mounting
- Fans can be supplied with support legs for horizontal floor mounting or horizontal clips for ceiling mounting. Vertical mounting clips are also available.
- Arrangement 9 belt drive motor positions

Motor Positions For Belt Drive Centrifugal Fans


 Location of motor is determined by facing the drive side of fan and designating the motor positions by letters W, X, Y, or Z as the case may be.

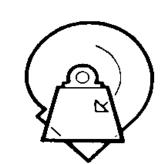


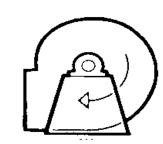


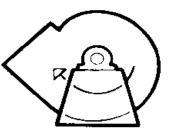

Fan Rotation & Discharge Positions

- Clockwise rotation
 - as viewed from drive end

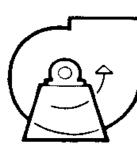


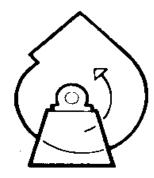

Up Blast

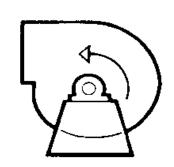

Top Angular Up

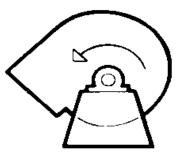

Top Horizontal

Top Angular Down

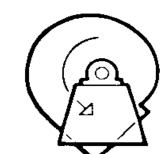

Down Blast Bottom Angular Down Bottom Horizontal


Bottom Angular Up




Fan Rotation & Discharge Positions

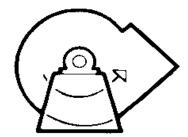
- Counter clockwise rotation
 - viewed from drive end


Up Blast

Top Angular Up

Top Horizontal

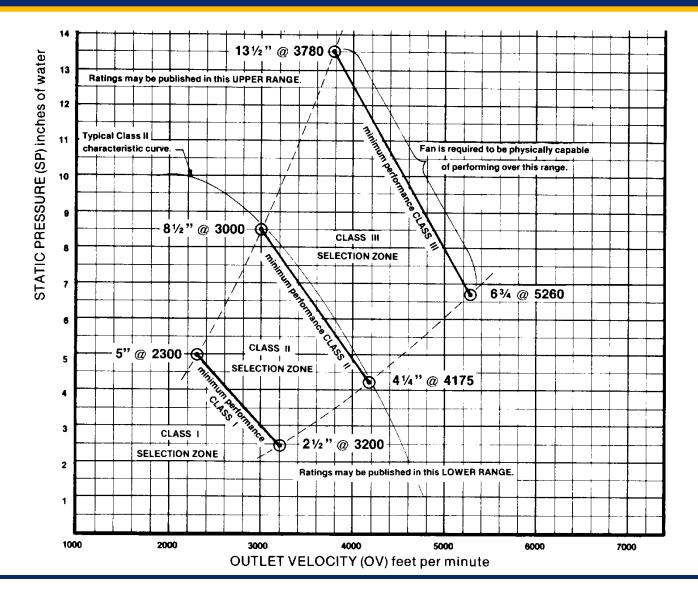
Top Angular Down



Down Blast

Bottom Angular Down

Bottom Horizontal



Fan Class of Construction

- AMCA designates minimum performance requirements for certain types of fans
- Construction standards are set based on pressure and outlet velocity
- Fan manufacturers use a variety of construction nomenclature
- In addition to performance limitations, fans have structural limitations

Centrifugal Fan Class Operating Limits

Spark Resistant Construction

- Special construction used for applications where spark may ignite explosion
 - flammable or explosive gas or dust in airstream
- AMCA Standard 99-0401-86 has guidelines for spark resistant construction
 - Type A
 - Type B
 - Type C

Spark Resistant Construction - Type A

- All parts of the fan in contact with the air or gas being handled shall be made of nonferrous material
- Steps must also be taken to assure that the impeller, bearings, and shaft are adequately attached and/or restrained to prevent a lateral or axial shift in these components

Spark Resistant Construction - Type B

- The fan shall have a nonferrous impeller and nonferrous ring about the opening though which the shaft passes
- Ferrous hubs, shafts, and hardware are allowed provided construction is such that a shift of impeller or shaft will not permit two ferrous parts of the fan to rub or strike
- Steps must also be taken to assure that the impeller, bearings, and shaft are adequately attached and/or restrained to prevent a lateral or axial shift in these components

Spark Resistant Construction - Type C

• The fan shall be so constructed that a shift of the impeller or shaft will not permit two ferrous parts of the fan to rub or strike

Why Special Materials are Used

- Corrosion resistance
- High temperature
- Spark resistance
- Abrasion and erosion resistance

Why Coatings Are Used

- Corrosion resistance
- Make fan easier to clean
- Aesthetics
- Safety (color marking)

Coating Selection

From Engineering Data Sheet ED-400

Table 4. Corrosion-Resistant Guide to Generic Coatings

	NO STEEL BLASTING					STEEL BLASTING					
CORROSIVE	ASPHALT- UM	VINYL	ZINC	EPOXY	AIR DRIED PHENOLIC	SYNTHETIC RESIN	HEAVY VINYL	EPOXY	BAKED PHENOLIC	PHENOLIC EPOXY	HI-BAKED EPOXY
NUMBER OF COATS	2	2	2	1	4	3	5	2	2	2	2
ACIDS											
ACETIC	F	F	U	G	G	E	G	G	E	E	E
BORIC	E	G	E	G	G	Е	Е	E	E	E	E
CARBOLIC	F	U	U	G	G	U	U	G	E	E	Е
CARBONIC	F	G	E	E	G	E	E	E	E	E	E
CHROMIC	F	G	U	F	U	G	G	U	F	U	G
CITRIC	G	G	U	G	G	G	Е	G	E	E	E
FLUOROBIC	х	G	U	х	G	х	E	х	х	х	Х
FORMIC	F	G	x	G	E	G	Е	E	E	E	E
HYDROBROMIC	х	х	U	х	U	G	Е	x	U	х	U
HYDROCHLORIC	G	G	U	G	G	E	E	G	E	G	E
HYDROFLOURIC	F	F	х	G	U	U	F	G	U	E	E
HYDROCHLOROUS	F	Х	x	F	х	E	F	F	F	G	G
LACTIC	F	G	U	G	E	E	G	E	E	E	E

Motor Characteristics

- Horsepower
- Service Factor (Typically 15% or 1.15 SF)
- Frame Size (T-Frame, U-Frame)
- Speed (RPM Rotations Per Minute)

RPM - 60 Hertz

RPM - 50 Hertz

Synchronous		# of
RPM	RPM	Poles
3600	3450	2
1800	1750	4
1200	1160	6
900	880	8

Synchronous RPM	Actual RPM	# of Poles
3000	2900	2
1500	1460	4
1000	970	6
750	720	8

Motor Characteristics

- Enclosure:
 - Open Drip Proof (ODP)
 - Totally Enclosed (TEFC, TEAO)
 - Severe Duty (Mill & Chem., Hostile Duty, Dirty Duty...)
 - Explosion Proof
 - Division I = Explosive agent present under normal operating conditions
 - Division II = Explosive agent only present under <u>abnormal</u> operating conditions
 - Class Defines types of hazardous materials (gases/dusts/fibers)
 - Group Defines the relative degree of hazard for each type of hazardous material

Motor Characteristics – Exp. Motors

Class	Group	Atmosphere	Notes
I (Gases)	A	Acetylene	Motor Not Available
I (Gases)	В	Hydrogen, Manufactured Gas	Motor Not Available
I (Gases)	С	Ethylether Vapor	Motor Available
I (Gases)	D	Gasoline, Petroleum, Naptha, Alcohol's, Acetone, Lacquer Solvent, Natural Gas	Motor Available
II (Dust)	Е	Metal Dust	Motor Available
II (Dust)	F	Carbon Black, Coal or Coke Dust	Motor Available
II (Dust)	G	Grain Dust	Motor Available

Motor Characteristics

- Phase:
 - Single (Normally Available up to 10 HP)
 - Three
- Voltage-1 Phase:
 - 115, 230 standard in US & Canada
 - 110, 220 International (50 HZ)
- Voltage-3 Phase:
 - 200, 208, 230,460 standard in US
 - 575 in Canada
 - 190, 380, 415, 440 International (50 HZ)

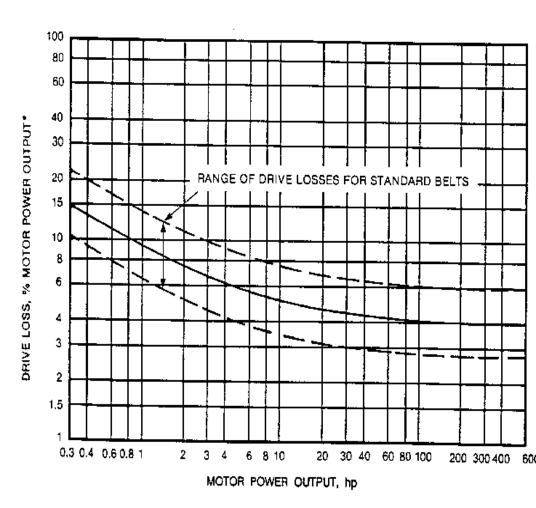
V-Belt Drives

- Economical Means of Transferring Power from Motor Shaft to Fan Shaft
 - Motor Sheave Fixed or Adjustable Pitch
 - Fan Sheave
 - Belts

V-Belt Drive: Advantages and Disadvantages

<u>Advantages</u>

- Easy to change fan speeds and performance
- Lower initial cost than direct drive


Disadvantages

- Requires more maintenance
- More difficult to guard
- Belts create dust (clean room problem)
- Tougher to achieve tight balance
- Drive losses due to belt slippage

Estimated Belt Drive Loss

- Higher belt speeds tend to have higher losses than lower belt speeds at the same horsepower
- Drive losses are based on the conventional vbelt which has been the "work horse" of the drive industry for several decades
- Typically, an additional 5% to 7% should be added to fan BHP for sizing motors

Direct Drive: Advantages and Disadvantages

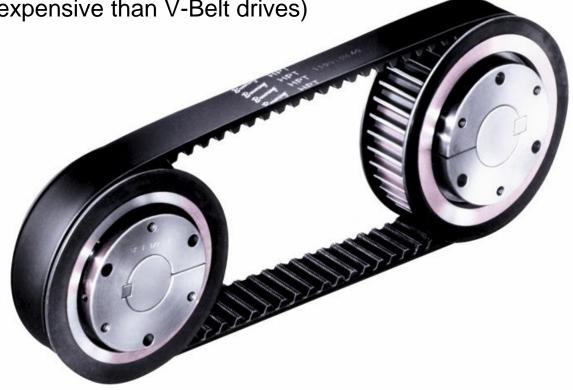
Advantages

- More compact
- Less maintenance
- No drive loss
- Easier to balance to low vibration levels

Disadvantages

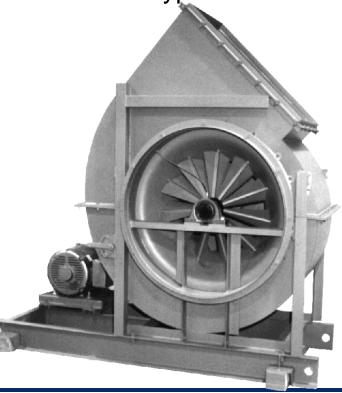
- More difficult to make fan selections
- May require modified wheel
- Couplings can be difficult to align on Arrangement 7 or 8 fans

Belt Drive – Final Comments

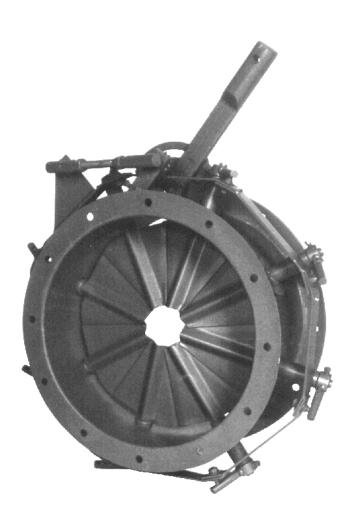

- TCF does not recommend adjustable sheaves on fans with motors over 10 HP
 - Cost Adjustable sheaves are 2-3 times more expensive than fixed sheaves.
 - Adjustable sheaves use set screws to lock in pitch diameters and set screws can vibrate loose.
 - Belt life is shorter on adjustable pitch drives (belt rides higher or lower in sheave).
- TCF does not recommend two groove drives on fans with fractional HP motors.
 - Fan motor may not be able to start fan because of the two grooves.

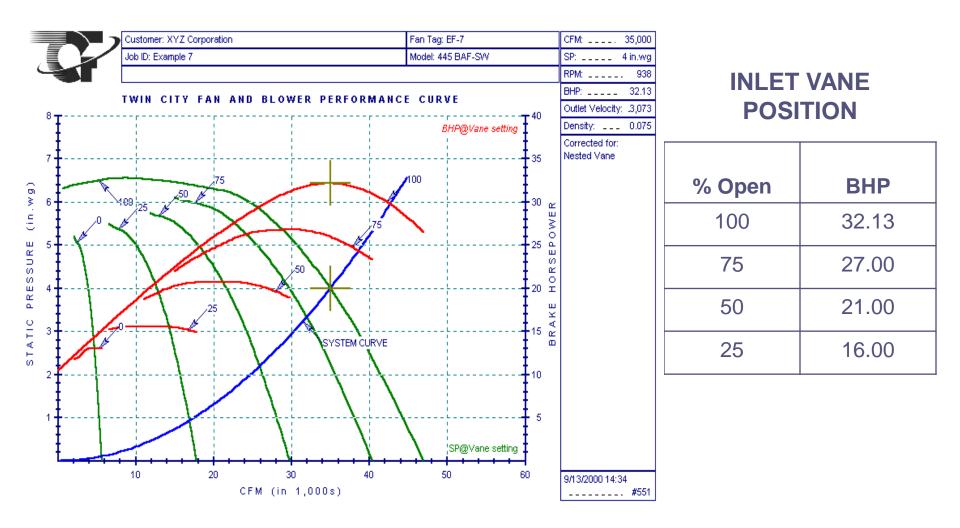
Belt Drive – Final Comments

• Timing Belt Drives

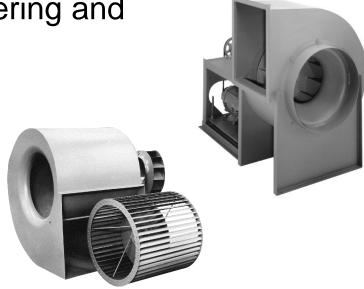

- TCF does not recommend the use of timing belt drives on fans.
 - Noise (13 DBA louder than V-Belt drives)
 - Alignment is critical
 - No slip characteristic is hard on motors
 - Increased vibration
 - Cost (2-3 times more expensive than V-Belt drives)

Nested Inlet Vanes


- Mechanical Volume Control Device
- Nested inlet vanes are built into the fan inlet cone
 - Saves space
 - Less expensive than external type

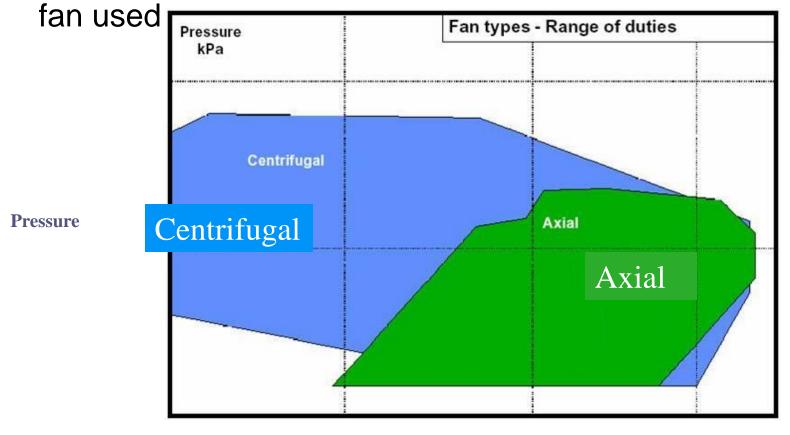

External Inlet Vanes

- External inlet vanes are bolted to the inlet flange of the fan
- Use of external vanes should be considered for handling hostile environments since operating linkages are shielded from the airstream
- External inlet vanes are available for high temperature construction


Inlet Vane Curves

Selecting the Right Fan

- Selecting the right fan involves considering and prioritizing many variables
 - Application
 - Performance (flow and pressure)
 - First Cost of Fan
 - Operating Costs
 - Life, Durability & Reliability
 - Space Requirements
 - Simplicity of Installation
 - High Temperatures and Severe Environments
 - Variable Volume Requirements
 - Sound Output
 - Etc...



Flow and Pressure

• The required flow and pressure may control the style of

Flow

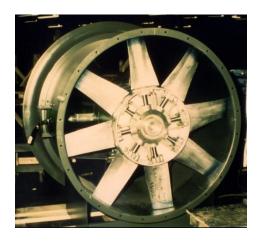
First Cost vs. Operating Cost

First Cost Considerations

- First cost should include the installation costs
- Unfortunately, some never look beyond this
- Make sure that all desired features are included when comparing costs

Operating Cost Considerations

- The 'BHP' (brake horsepower) of the fan will identify operating costs
- For variable volume systems, use BHP at part load
- Add losses for v-belt drives, inverters (VFD's), and system effect losses


Expected Life, Durability, Reliability

- Difficult to quantify
- Compare materials of construction
- Use higher 'class' of construction
- Compare bearing life
- Lower speed operation is often more reliable
- Fans are often customized to improve reliability

Space Requirements

- Axial fans are usually smaller than centrifugal fans
- Forward curve fans are smaller than other centrifugal fans
- Radial bladed fans tend to be the largest fans
- Fan "arrangement" affects space

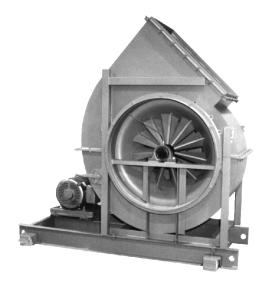
Axial

Forward Curved

Radial

Simplicity of Installation

- Fan "arrangements" with motor mounted are easier to install
- Fan discharge position may simplify ductwork
- Use axial fan for straight through flow


High Temp and Severe Environments

- Bearings, v-belt drives, and motors may need protection and/or cooling
- High temperatures and corrosive environments may require special materials, and or coatings
- Need to know airstream conditions and ambient conditions
- Quantity and type of solids in the airstream can limit usable fan types

Variable Volume Requirements

- Methods of adjusting flow volume will vary with fan types
- The ability to supply a variety of flowpressure combinations with stable flow affects the fan type and fan size
- Customize fan to optimize for variable volume requirements

Nested Inlet Vane

External Inlet Vane

VFD

Outlet Damper

2 Speed Motors

Parallel Fans

Clutches

Turbine Drive

Adjustable Pitch Axial

Controllable Pitch Axial

Sound Output

- Axial fans generate more noise than centrifugal fans
- Axial fan noise is in higher frequencies, which are easier to attenuate
- Forward curve noise is the most 'pleasing' and seldom generates noise problems
- Airfoil bladed centrifugals normally have the lowest sound output

Other Factors Affecting Fan Selection

- Ultra-low vibration requirements
- Low maintenance (fan inaccessible)
- Flow measurement devices
- Maximum (or minimum) outlet velocity
- Present and future performance needs

Thank you

